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CALCULATION OF AN EJECTION EXPLOSION 

IN A RADIAL APPROXIMATION 

N. A. Guzhov and P. F. Korotkov UDC 539.3 

Equations a r e  der ived descr ib ing  the motion of a med ium with an eject ion explosion, under  
the assumpt ion  that the med ium is i ncompres s ib l e  and moves  in a radial  d i rec t ion a w a y f r o m  
the cen te r  of the explosion.  Here  account is taken of the tangential  s t r e s s e s  between the mov-  
ing l a y e r s  of the medium.  A compar i son  of the calculat ions of the veloci t ies  of the motion of 
the dome and the d imensions  of the c r a t e r s  fo rmed  showed good agreement ,  both with model  
expe r imen t s  on the eject ion of sand, and with l a r g e - s c a l e  e ject ion explosions.  

1.  I n t r o d u c t i o n  

The development  of an eject ion explosion in soil  o r  rock  with t ime  can be r ep resen ted  in the fo rm of 
th ree  bas ic  s tages  [1, 2]. The underground-explos ion  s tage l a s t s  f r o m  the moment s  of the detonation of 
the charge  up to the a r r i v a l  of the wave at the su r face .  Here  the motion of the medium is c lose  to sphe r i -  
cal s y m m e t r y .  In the second stage,  s ta r t ing  a f t e r  ref lect ion of the wave f rom the f ree  sur face ,  a dome 
develops.  This s tage continues up to the momen t  of the break through  of the gases  f rom the cavity to the 
a tmosphe re .  Af te r  this ,  the dome b r eaks  down rapidly and, during the succeeding moment s  of t ime,  in 
the third stage,  t he re  is a ba l l i s t ic  d i spe r s ion  of pa r t i c l e s  between which the re  is ve ry  l i t t le  connection. 

The two-dimens ional ,  not fully es tabl i shed motion of the med ium in the second s tage de te rmines  to 
a cons iderable  degree  the d imensions  of the future c r a t e r ,  A complete  invest igat ion of this motion is c o m -  
pl ica ted  and is poss ib le  only using h igh-speed  compu te r s .  In [3-6], methods  a r e  p roposed  for  calculat ing 
the equations of an e las toplas t ic  m ed i um  with two spat ia l  va r i ab l e s .  Such calculat ions r equ i re  a l a rge  
amount of machine  t ime;  the re fo re ,  they a r e  not ve ry  sui table in  cases  where  a l a rge  number  of va r ian t s  

is needed for  the ana lys i s .  

To make  p r e l i m i n a r y  calculat ions a imed at c lar i fying the effect  of the p a r a m e t e r s  cha rac te r i z ing  
the p r o p e r t i e s  of the med ium and the conditions of the conduct of the explosion on the eject ion c r a t e r ,  it 
is expedient to use  I e s s  compl ica ted  methods ,  requir ing a smal l  amount of machine  t ime  for each var iant .  
In the const ruct ion of a s imple  e ject ion model ,  in the p r e sen t  work  the following assumpt ions  a r e  used: 
1) the motion of the medium in the second s tage takes  p lace  only in a radia l  direct ion;  2) the medium is 

i ncompres s ib l e .  

The f i r s t  postula t ion is based  on the fact  that the development  of the dome s t a r t s  a f t e r  the end of 
the spher ica l ly  s y m m e t r i c a l  underground-explos ion  s tage,  in which the veloci ty has a radial  direct ion.  
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In spi te  of the fact  that, a f te r  ref lec t ion  of the wave f r o m  the f ree  sur face ,  the veloci ty  changes di-  
rec t ion  somewhat ,  it subsequently again becomes  c lose  to radial ,  s ince the change in the s t r e s s e s  is main ly  
de te rmined  by the p r e s s u r e  drop between the cavi ty  and the f ree  su r face  and takes  p lace  (approximately)  
in a radia l  d i rec t ion.  

On the photographs  given in [7] it can be seen  that, in the s tage of the fo rmat ion  of the dome, the 
motion of a weakly connected soil is c lose  to radia l .  In addition to this,  expe r imen t s  with the sca t t e r ing  
of rad ioac t ive  pickups [8] show that  pa r t i c l e s  of the soil which before  the explosion lay  on exact ly the 
s a m e  radius ,  drawn f rom the cen te r  of the explosive  to the sur face ,  fall at exact ly  the s a m e  place .  This 
impor tan t  specia l  c h a r a c t e r i s t i c  of the mot ion of a med ium with eject ion shows that,  with calculat ions in 
a radia l  direct ion,  it is sufficient to use  only one calculat ing cell .  

The assumpt ion  of i ncompress ib i l i t y  is based  on the fact  that, with optimal  depths of the charges ,  
the s t r e s s e s  in the soil at the moment  of the a r r i v a l  of the wave a t  the su r face  of the ground a re  smal l  
and do not b r ing  about any significant  c o m p r e s s i o n .  

The veloci ty  a s s um ed  by the med ium under  the action of these  s t r e s s e s  is taken into cons idera t ion  
in the p re sen t  work  by the fact  that,  in calcula t ions  of the eject ion in the second stage,  the med ium has an 
initial veloci ty  in the radial  d i rect ion.  

A model  of an i ncompres s ib l e  e las top las t i c  med ium was used in [9] with cons idera t ion  of the p r o b l e m  
of the sphe r i ca l ly  s y m m e t r i c a l  explosion in the ground. 

We take  note of [10], which d iscussed  a s imp le  model of an ejection explosion.  However,  in the model 
of the med ium cons idered  here  the re  was no f r ic t ion  between adjacent  e lements ,  and, in the equation of 
motion of the i ncompres s ib l e  medium,  no account was taken of the force  of l a t e r a l  th rus t .  Agreemen t  with 
the eject ion exper iment  was achieved by se lec t ion  of the coefficient of the r e s i s t a n c e  force ,  introduced in 
[10], as propor t iona l  to the veloci ty  of an e lement  of the medium.  

2 .  T h e  E q u a t i o n  o f  M o t i o n  

In the spher ica l  s y s t e m  of coordina tes  r,  0, q~ (correspondingly,  the radius ,  the po l a r  angle, the lon- 
gitude) the equation of motion of a continuous med ium for  the radia l  d i rec t ion has the fo rm 

P -7[ ~ = r 2i ~ (r~%)Or -~ r sint 0 ~ (Tro0Osin O) % § % pg cos O, (2.1) 

where  p is the densi ty  of the medium;  t is the t ime;  v r is the velocity in the rad ia l  direction;  (rr, nO, crr 
a r e  the no rma l  s t r e s s e s ;  trO is the tangential  s t r e s s ;  g is the acce le ra t ion  due to g rav i ty .  In the equation 
it is taken into cons idera t ion  that the mot ion of the medium has s y m m e t r y  around the axis O= O. 

We a s s u m e  that  the mot ion takes  p lace  only in the radial  direct ion,  and that  the med ium is incom-  
p re s s ib l e ,  

v~=v0=O, p=const. (2.2) 

With conditions (2.2), the equation of the conserva t ion  of m a s s  has the fo rm 

__0 (r2Vr) = 0. (2.3) 
Or 

The p r o b l e m  of the eject ion of soil  in the p r e s e n c e  of axial s y m m e t r y  contains two independent spat ial  
va r i ab l e s  and the t ime .  A cons ide rab le  s impl i f ica t ion  is achieved if, in the calculat ion of the problem,  
t he r e  r e m a i n  only one spat ia l  va r i ab le  and the t ime .  To this end, in the p r e sen t  work the equation of mo-  
tion is in tegra ted  ove r  the rad ius .  
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Let us obtain  an in tegra l  f o r m  of Eq. (2.1) fo r  an e l emen t  of the cont inuous  m e d i u m  extending along 
the r ad ius .  We mul t ip ly  Eq. (2.1) by r2sin 0 and in t eg ra te  f r o m  the rad ius  of the cav i ty  r i to  the rad ius  of 
the  s u r f a c e  of the g round  r 2 (Fig. 1; the va lues  of r i and r 2 depend on eand  t): 

S S p * sin Or~dr = sin 0 o_ (r~-%) dr + sin 0 :tordr - -  sin 0 (% + %) r d r - -  g cos 0 o r  ~ sin 0 dr.  
Ot Or 

r l  r |  r l  rl  r~ 

Here,  on the r i g h t - h a n d  par t ,  in the second t e r m  the de r iva t ive  is taken of the in tegra l ,  and not of 
the e x p r e s s i o n  u n d e r  the in tegra t ion  s ign.  This  r e su l t  can  be obtained by der iv ing  Eq. (2.4) d i r ec t l y  for  
an e l emen t  of the  m e d i u m  extended along the rad ius .  The des igna ted  in tegra l  is p ropo r t i ona l  to the t an -  
gent ial  f o r c e  ac t ing  on each  l a t e r a l  s u r f a c e  of the e lement .  The tota l  f o r c e  ac t ing  on an e l emen t  is p r o -  
po r t iona I  to the de r iva t ive  of the in tegra l .  

The l e f t -hand  p a r t  of (2.4) is equal to the  m a s s  of m e d i u m  in unit  angle  0 and angle  q~, mul t ip l ied  by 
the a c c e l e r a t i o n  of the  c e n t e r  of m a s s  r 0, 

r ,  
I Ov r 02ro 
, P 7 / s i n  0 r2dr = m - ~  ; (2.5) 
rl  

o 3 ( 4 -  rn=- -5 -ps in  (r~--r~), r0: (2.6) 
4 (r  3 - -  r3i)" 

F r o m  the l a s t  re la t ionsh ip  we obtain the ve loc i ty  of the c e n t e r  of m a s s ,  

Or~ _ 3 , u 1 = - -  

~"~ ~ 6t r~ --  r~ S t '  V~ = - ~  , 

w h e r e  v 1 is t h e  ve loc i ty  of the  boundary  of the  cavi ty ;  v~ is the ve loc i ty  of the s u r f a c e  of the ground.  

In t eg ra t ing  the equat ion of cont inui ty  (2.3), we obtain 

r 2 v r  ~ F2V: 2 t 2 ~ = r2v~ = -~- (r i ,+ r:% + r 2) v o. (2.7) 

The value of r~v 0 cannot  be subs t i tu ted  into this  equali ty,  as was  done e r r o n e o u s l y  in [10], s ince  the 
c e n t e r  of m a s s  is shif ted o v e r  the  p a r t i c l e s  of the  med ium,  and the m a s s  be tween  r~ and r 2 does not r e -  
ma in  cons tan t .  

The s t r e s s e s  e n t e r  into Eq. (2.4) in such  a m a n n e r  that  it is  convenient  to in t roduce  the m e a n  values  
of  t he se  quan t i t i e s  

= J x r d r  rdr,  x = {p, tY0,(~,~ro 1, x o =[poaoo, ~o,  ~:o1" X0 
(2.8) 

rt  J r t  

Using (2.5), (2.8), we t r a n s f o r m  (2.4) to  the f o r m  

(p=r2-w:) gr O, 
000 _ _  3 0 2 r l  ~_ r2 3 2 2 
- -  -- ~ [ %  ( r 2 -  r~)sin 0] 3 (2.9) 
a, ~ ( 4 -  r?) 8:. 0 2p Ti + ~iT, + T~ (~o~ + ~o) - -  ~ - -  T~ 

where  Pl is the p r e s s u r e  in the cavi ty;  P2 is the p r e s s u r e  at the s u r f a c e  of the ground .  The values  of r l 
and r 2 a r e  d e t e r m i n e d  f r o m  the a lgeb ra i c  r e l a t ionsh ips  (2.6) us ing the values  of r 0 and m.  

The  s u p p l e m e n t a r y  equat ions  fo r  f inding z o, q00, zr depend on the  model  of the med ium.  

3 .  An I n c o m p r e s s i b l e  M e d i u m  w i t h  C o u l o m b  F r i c t i o n  

During the p r o c e s s  of the f o r m a t i o n  of the  dome,  the ma in  m a s s  of the  e jec ted  m e d i u m  is subjec ted  
to  cons ide r ab l e  s h e a r  de fo rma t ions ,  c o n s i d e r a b l y  exceeding those  with which the  t h e o r y  of e las t i c i ty  is 
st i l l  appl icable .  However ,  at the edges  and the cen t e r  of the dome,  the s h e a r  de fo rma t ions  a r e  smal l .  
Near  the axis  of  s y m m e t r y ,  the e l emen t s  a r e  shif ted only s l ight ly  with r e s p e c t  to one another ;  t he r e fo re ,  
he re  the  t angent ia l  s t r e s s e s  obey Hooke ' s  law. Fa r  f r o m  the axis  of s y m m e t r y ,  at angles  c lose  to  the 
hor izon ta l ,  the e l emen t s  of the  m e d i u m  t h e m s e l v e s  have smal l  shif ts ,  and the tangent ia l  s t r e s s e s  a r e  a l so  
not g r e a t .  

In the mot ion  unde r  cons ide ra t ion ,  the  a r e a s  of slip a r e  the l ines 0 = c o n s t .  The tangent ia l  s t r e s s e s  
in t h e m  a r e  ca lcu la ted  in a c c o r d a n c e  with the re la t ionsh ips  of the t h e o r y  of e las t ic i ty ,  if they  do not ex-  
ceed  the l imi t ing  va lue  T . ,  
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" ~ ~% (3.1)  
~,e = - 7 - - ~ '  [~,01 < ~ * ,  

where g is the shear  modulus. We use relationship (3.1) in a fo rm differentiated with respec t  to the time, 

aTr._20 = ~ avr (3.2) 
Ot r 80" 

In such a form,  the s t r e s s e s  a re  calculated f rom the natural  deformations,  determined f rom the  
rat io of the shifts to the instantaneous dimensions,  and to the original dimensions.  In formula  (3.2) this 
is taken into account by the fact that the quantity r is not differentiated. 

We calculate the limiting s t r e s s  using Coulomb's law, 

T ,=c  --  kao(~o < c/k), x,=0(% >/c/k), (3.3) 

where c is the adhesion; k is the fr ic t ion coefficient.  

To calculate the mean values using formulas  (2.8) we need to know the dependence of the s t r e s s e s  
on the radius.  The exact  distr ibution depends on the radial motion of an element, considerat ion of which 
would grea t ly  complicate  the problem. Approximately,  the normal  s t r e s s e s  will be assumed equal to one 
another:  

~ r = ( 1 o = ( ~  = - -  P. (3.4)  

The dependence of the s t r e ss  on the radius is assumed to be l inear  

fir "-~ p~rl - -p l r~  ~. p l - - p ~ r .  ( 3 , 5 )  
r~ - -  r I r 2  1 rl 

In a homogeneous motionless  medium, located in a field of gravity,  the s t r e s se s  depend on the dis- 
tances in accordance  with a l inear  law. 

In another  l imiting case,  that of a thin shell whose thickness is small  in compar i son  with the radius 
of curvature ,  the s t r e s s e s  a re  distributed l inear ly  over  the thickness also with motion accompanied by 
accelera t ion  (with velocit ies which a re  small  compared with the speed of sound). 

It is to be expected that the use of formula  (3.5) for the case under considerat ion will not introduce 
any la rge  e r r o r s ,  since it is used only for  determining the mean tangential s t r e s s e s .  Using (3.4), (3.5), 
we obtain f rom (2.8) 

p~ (2rl -~- r~) -~ Pa (rl "J- 2r2) 
Po = 3 (r 1 -~- r2) 

Substituting the value fround for P0 into (2.9) and simplifying, we obtain 

Ovo 3 0 Pl --  P2 g COS 0. (3.6) 
O'-'t" = 2p (r~-- r~)sinO d"-'ff [ (r22 --  r~)%sinO] -~ p~--__~) 

We multiply (3.2) by r, integrate over  the radius within the l imits  f rom r 1 to r 2, and, using (2.7), 
(2.8), we obtain 

0% _ 2it 0 [(r 2 _1_ rxrz -I- r~) vo] (1%1 < x,o)- (3.7) 
T[" - -  3rlr~. (rl + r~) O0 

The limiting mean tangential s t r e s s  r , 0  is obtained f rom (3.3), 

X,o=C-}-kpo(Po> - -  c/k), ~,o=O(po ~< --  c/k). (3.8) 

The values of r~ and r 2 are  connected with r 0 by the algebraic  formulas  (2.6). The equation of the adiabatic 
curve  connects the p r e s s u r e  in the cavity with its volume V 1. The volume is calculated f rom the values  
of rl  (0), 

dpt dV1 dV1 2~ 3 .  
p-T - ~ Y  v--~-' - ~ - : T  rIsmO" (3.9) 

The sys tem of equations in par t ia l  der ivat ives  (3.6), (3.7), together  with relat ionships (3.9) and for-  
mulas (2.6), (3.8), descr ibes  the motion of a medium with explosion ejection, in a radial approximation. 

With elast ic  tangential s t r e s se s ,  the sys tem of equations (3.6), (3.7) is a sys tem of hyperbolic type. 
The ra te  of propagation of per turbat ions  in the plane t, 0, equal to the slope of the cha rac te r i s t i c  curve, 
is expressed  in the form 
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a0 ]/-V- (3.10) dN-=-+ ~-7# 

This r a t e  depends on the d i s tance  f rom the end of the e lements  of m a s s  to the or ig in  of coord ina tes .  With 
r 1Nr2, f rom (3.10) we obtain the r e s u l t  that  the l i n e a r  ve loc i ty  of the pe r tu rba t i ons  along the dome is equal 
to the ve loc i ty  of s h e a r  waves in an unbounded medium.  We note that ,  in the s y s t e m  of equations under  
cons idera t ion ,  the re  is  a th i rd  fami ly  of c h a r a c t e r i s t i c  cu rves  O=const .  

4 .  B o u n d a r y  a n d  I n i t i a l  C o n d i t i o n s  

In seeking the solut ion of Eqs.  (3,6)-(3.9), in the region  t _  > 0, 0-< 0 <- 00 (00< r /2 ) ,  the following bound- 
a ry  condit ions a r e  taken:  

~I0=0 -- 0; ~'ol0=0, --- 0. 

The f i r s t  condit ion is obtained f rom the s y m m e t r y  of the p rob lem,  and the second r e f l e c t s  the absence  of 
mot ion of the med ium fa r  f rom the explos ion .  

At the ini t ia l  moment  of t ime,  it is  n e c e s s a r y  to give the veloci ty  and the tangent ia l  s t r e s s ,  as well 
as the va lues  of the r ad i i  of the  cavi ty  and the su r face ,  as  functions of the angle 0. 

These  data can be obtained e i t he r  f rom ca lcu la t ions  of s p h e r i c a l l y  s y m m e t r i c a l  explosions  [11], o r  
f rom expe r imen t a l  data on an underground explos ion  [2]. 

With ca l cu l a t i ons ,  the in i t i a l  r ad ius  of the cav i ty  is  de t e r m i ne d  f rom i ts  value at  the moment  when 
the wave r e a c h e s  the f r ee  su r face  (the end of the s p h e r i c a l l y  s y m m e t r i c a l  motion in the medium) o r  at  
the moment  when the r e f l ec t ed  wave r e a c h e s  the expanded cavi ty  (the end of the s p h e r i c a l  expansion of 
the c a v i t y ) .  F r o m  the e x p e r i m e n t a l  da ta ,  the in i t i a l  r ad ius  can be d e t e r m i n e d  f rom the channeling index 
in the given so i l  (from the r a t i o  of the volume of the underground cavi ty  to the weight of the charge)  [2]. 

The in i t ia l  ve loc i ty  of the cen t e r s  of m a s s  is  ca lcu la ted  f rom the value of the to ta l  k inet ic  energy of 
the medium E k, taken  on by it at the moment  of t ime  at which r~ was de te rmined :  

V~ r $ r ~ [ 2~o (zE]  (4.1) 
2 w t 

where  E is the energy  of the explosion;  a is  a d imens ion l e s s  quantity,  equal to the ra t io  of the total  kinetic  
energy  of the medium at the se l ec t ed  moment  of t ime  to the to ta l  energy  of the explosion.  

F o r m u l a  (4.1) was obtained under  the a s sumpt ion  of the uni form d i s t r ibu t ion  of the kinet ic  energy of 
the medium in the unde rg round-exp los ion  s tage  over  al l  d i rec t ions ,  taking account of the dependence of the 
ve loc i ty  on the rad ius  us ing fo rmula  (2.7). With r 1 ~ r 2, fo rmula  (4.1) is obvious.  

The in i t ia l  va lues  of r 0 and r 2 a r e  de t e rmined  f rom re l a t ionsh ips  (2.6) using the values  of r 1 and m. 
The l a t t e r  value,  with the explosion,  at a depth H below the hor izonta l  su r face  of the ground, of a charge  

of r ad ius  R, is  found using the fo rmu la  
t m0 = -~- p sin 0 [(H/cos 0) 3 - -  R~]. 

We note the spec ia l  c h a r a c t e r  of the solut ion with the above in i t ia l  r ad i i .  The values  of r 1 do not de-  
pend on the angle,  while the values  of r 2 r i s e  cons ide rab ly  with an i n c r e a s e  in 0. In th is  case ,  it follows 
f rom fo rmula  (3.10) that  the c h a r a c t e r i s t i c  cu rves  with a plus s ign approach  each other ,  although the ra te  
of approach  fa l l s  ove r  the cou r se  of t ime ,  due to the i n c r e a s e  in the rad i i .  Near  the axis  of s y m m e t r y ,  the 
points  of i n t e r s e c t i o n  of the  c h a r a c t e r i s t i c  cu rves  l i e  ve ry  fa r  apar t .  In the middle  par t ,  the i n t e r sec t i on  
of the c h a r a c t e r i s t i c  cu rves  can take  p lace  a f t e r  a finite t ime .  This i n t e r sec t i on  can be i n t e rp re t ed  as the 
appea rance  of a discont inui ty  in the ve loc i t i e s ,  the d i sp lacements ,  and the tangential  s t r e s s e s  along the s u r -  
face,  on one s ide  of which t h e r e  is an in tense  motion of the e jec ted  medium,  while on the other  s ide t he re  
is p r a c t i c a l l y  no motion.  It is m o r e  p robab le  that  the spec ia l  c h a r a c t e r i s t i c  under  cons ide ra t ion  will  ap-  
p e a r  with a ca lcu la t ion  of e jec t ion  in a r a t h e r  s t rong  medium,  where  condit ion (3.6), l imi t ing  the tangent ia l  

s t r e s s e s ,  is used in a s m a l l e r  ca lcula t ing  region.  

The ini t ia l  p r e s s u r e  in the cavi ty  is  de t e rmined  f rom the equation of s ta te  of the explosion produc ts  

over  a known volume of the cavi ty  

P, = 3 (~.~r-~ ') ~E, 
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where ~/ is the adiabatic index of the explosion products;  fl is a dimensionless  quantity, equal to the ratio 
�9 of the internal energy of the gas in the cavity at a selected moment  of t ime to the total energy of the ex- 
plosion. 

The tangential s t r e s se s  at the initial moment  of t ime in the calculations were  assumed equal to zero  
since, with spher ical ly  symmet r i ca l  motion, they a re  absent.  

5 .  B a l l i s t i c  S c a t t e r i n g  a n d  H e a p i n g  

At the end of the second stage of the development of an ejection explosion the thickness of the dome 
becomes  so small  that the gas breaks  through out of the cavity to the a tmosphere ,  and the weakly connected 
medium forming the dome decomposes  into individual pieces and s ta r t s  to move along ba l l i s t i c t r a j ec to r i e s .  

In the presen t  work, the moment  of breakdown is taken as the t ime of the ascent  of the dome to a 
height equal to half the depth of the charge.  Calculations have shown that the radius of the c r a t e r  changes 
only slightly if the moment  of breakdown is taken as a small  height (one-third of the depth), or  if the c~l- 
culation is ca r r i ed  fur ther  down to a tmospher ic  p r e s s u r e  in the cavity. In all these cases ,  the volume of 
the cavity increased considerably,  and the p r e s s u r e  fell sharply  and had only a slight effect on the p r e s -  
sure  of the medium. 

The ball ist ic scat ter ing,  with taking account of the res i s tance  of the a i r  (it is insignificant for large  
explosions), was calculated in accordance  with a simple scheme.  An element of mass  will be ejected to 
the surface if it has sufficient kinetic energy to r ise  to the surface,  with sat isfact ion of the condition 

(v0 cos 0)2/2 >7 g(H --  r~ cos 0). (5.1) 

The horizontal flight distance,  reckoned f rom the epicenter ,  is expressed in the form 

L = r  o cos 0+y  0 sin 0(Vo cos 0+V(~'0 cos 0)2-- 2g(H ~ r~ cos O))/g. (5.2) 

The dimension of the intermediate  c r a t e r  R+ was determined f rom the maximal  angle 0+ for  which 
the condition (5.1) R+= H tan 0+ was satisfied.  

If the angle 0+ is g r ea t e r  than the angle of the internal fr ict ion of the medium, then the final dimen- 
sion of the c r a t e r  will be g rea t e r  than the intermediate,  due to slipping of the edges. In this case,  a r e -  
calculation is made, s tar t ing f rom the conservat ion of the ejected mass .  The slope of the sides of the 
final c r a t e r  was taken equal to the angle of internal friction. 

In this case, no account was taken of inert ial  sliding of the sides, which is not great  for not too great  
depths. 

The medium ejected to the surface  of the ground forms a heap around the c r a t e r .  Its height was 
determined f rom the condition of the conservat ion of mass  

0+ L 

f S phxdxIOL/00<0), (5.3) 
L+ 

where h is the height of the heap; x is the distance f rom the epicenter;  L+ is the distance at which falls an 
element of mass ,  lying in the funnel at an angle of 0+. If the inequality in (5.3) has the other sign, then the 
integrat ion l imits  in one of the integrals  /nust be exchanged. 

Differentiating (5.3), we obtain 

h=--m/(p lLO L/c)O) (aL/ao < 0), (5.4) 

where Pl is the density of the soil in the heap, which is general ly  less  than the density of the medium in 
the solid ground. If the quantity 8 L / 9 0  changes sign, then two layers  of soil will fall at exactly the same 
distance,  and the total height of the heap will be determined by the sum of both layers .  

Formulas  (5.2), (5.4) define the dependence h(L) in t e rms  of the p a r a m e t e r  0. 

6.  R e s u l t s  o f  C a l c u l a t i o n s  

The equations in par t ia l  der ivat ives  (3.6), (3.7) were approximated by a two- layer  explicit difference 
scheme using centered differences wi th  respec t  to space and t ime [12, 13]. 
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TABLE 1 

Hg I Hg 

404 7,8 3,3 t,4 
230 78,7 3.2 f,7 
135 31t i,0 
142 ii,5 413 2,5 

R+/H 

exP �9 I calc.~ 

1,85 [ 1,93 
i ,48 1,54 
1,15 1,25 
0,98 t,10 

The stabil i ty condition was obtained f rom formula  (3.10). Since the radii increased over the course  
of t ime, the pe rmiss ib le  spacing with respec t  to t ime also increased.  This c i rcumstance  promoted an ac-  
celera t ion of the calculation. If, in the new t ime layer ,  the s t ress  exceeded the limiting value, the s t r e s ses  
were  decreased  in accordance  with formula  (3.9). A s imi la r  method was used in [3-6, 11] in the calcula-  
tion of elastoplast ic  motions.  

The difference scheme developed was used to calculate model experiments on the ejection of mass  in 
a vacuum chamber  [7]. The initial data were selected in accordance  with experiment.  The density of the 
sand was 1.52 g / c m  2, there  was no adhesion, and the slope of the internal fr ict ion k = 0.78, The initial ve-  
locity was equal to zero .  The initial p r e s s u r e s  in an a i r  bubble Pl, its radius rl, the depth H, the p r e s s u r e  
a t  the free surface,  and the dimensions of the calculated and experimental  c r a t e r s  are  given in Table 1. 
The agreement  is sa t i s fac tory .  

Figure  2 shows the development of an ejection dome in a model experiment  [7]. The solid line is a 
plot of the profi le of the dome, obtained by calculation fo r  exactly the same moments  of t ime. 

Figure 3 shows the values of the radii  of the c r a t e r s  as a function of the fr ict ion coefficient (dashed 
line) and on the adhesion (solid line), calculated with the other  pa rame te r s  remaining unchanged. An in- 
c r ease  in the fr ict ion or  the adhesion dec reases  the radius of the c ra t e r s  formed, however,  to a varying 
degree.  The s t rongest  effect is that of a change in the fr ict ion coefficient. In a medium which has not 
broken down, the region of the calculated changes in the maximal tangential s t r e s se s  with a change in the 
adhesion or  the fr ict ion coefficient is approximately identical. With ejection, the p r e s s u r e  near  the cavity 
is considerably  higher than the hydrostat ic  p re s su re ;  therefore,  here the tangential s t r e s ses  are  cons ider-  
ably g rea t e r .  

The method expounded can be used for the calculation of large ejection explosions. The solid line in 
Fig. 4 shows the rate of r i se  of the epicentric par t  of the dome as a function of the time, obtained in the 
Schooner experiment [14] (an underground nuclear  experiment in the United States Trotyl  equivalent 31 
kilotons, depth 108 m), and calculated by the method proposed in the present  ar t ic le  (dashed line), The 
agreement  is sa t i s fac tory .  
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QUESTIONS OF SIMILARITY AND THE SCATTERING 

OF WAVES IN VISCOPLASTIC MEDIA 

G. M. Lyakhov and K. S. Sultanov UDC 624.131.43 +539.21.084 

A study of plane waves  in v iscous  med ia  was made  in [1-7]. A solution of the p r o b l e m  of the p ropaga -  
t ion of a wave se t  up by uns t eady- s t a t e  shock loading in a v i scoe las t i c  med ium was obtained using an e lec -  
t ronic  compute r  in [6], and a solution in a v i scoplas t ic  med ium in [1, 7]. In the l a t t e r  case ,  different  equa-  
t ions a r e  introduced descr ib ing  the behav io r  of the med ium with loading and unloading, which leads to the 
fo rmat ion  of res idua l  deformat ions .  On the bas i s  of the solutions of [1, 7], a f in i te -d i f fe rence  r e p r e s e n t a -  
t ion was cons t ruc ted  for  the equations of mot ion in Lagrange  var iab les ,  and fo r  the sequence of differential  
equations de te rmin ing  the behav ior  of the medium.  The method of " s t r a igh t - th rough"  calculat ion with 
pseudov i scos i ty  was used.  The introduction of the pseudoviscos i ty  br ings  about the r ep l acemen t  of the 
shock fronts  by regions  of a continuous change in the p a r a m e t e r s ,  which leads  to additional difficult ies in 
de te rmina t ion  of the laws governing the washing-out  of a shock wave and the s ca t t e r i ng  of waves .  Below, 
the method of c h a r a c t e r i s t i c  cu rves  is  used to obtain a solution to the p rob lem of the propaga t ion  of a 
plane wave, se t  up by an uns t eady - s t a t e  shock load in a l inea r  v iscoplas t ic  medium,  cor responding  to the 
model  of [1]. It follows f r o m  the calcula t ions  that vo lumet r ic  v i scos i ty  leads to sca t t e r ing  of the waves  
and to nonobservance  of the condition of s imi l a r i t y .  An i nc r ea se  by an o rde r  of magni tude in durat ion of 
a wave changes the ra te  of propagat ion  of the m a x i m u m  of the s t r e s s e s ,  and the s t r e s s e s  themse lves ,  by 
only a few pe rcen t .  The values of the deformat ion  and the veloci ty  of the p a r t i c l e s  va ry  to a g r e a t e r  de- 
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