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CALCULATION OF AN EJECTION EXPLOSION
IN A RADIAL APPROXIMATION

N. A, Guzhov and P. F. Korotkov UDC 539.3

Equations are derived describing the motion of a medium with an ejection explosion, under
the assumption that the medium is incompressible and moves in a radial direction away from
the center of the explosion. Here account is taken of the tangential stresses between the mov-
ing layers of the medium. A comparison of the calculations of the velocities of the motion of
the dome and the dimensions of the craters formed showed good agreement, both with model
experiments on the ejection of sand, and with large~-scale ejection explosions,

1. Introduction

The development of an ejection explosion in soil or rock with time can be represented in the form of
three basic stages [1, 2}. The underground-explosion stage lasts from the moments of the detonation of
the charge up to the arrival of the wave at the surface. Here the motion of the medium is close tospheri-
cal symmetry. In the second stage, starting after reflection of the wave from the free surface, a dome
develops. This stage continues up to the moment of the breakthrough of the gases from the cavity to the
atmosphere. After this, the dome breaks down rapidly and, during the succeeding moments of time, in
the third stage, there is a ballistic dispersion of particles between which there is very little connection.

The two~dimensional, not fully established motion of the medium in the second stage determines to
a considerable degree the dimensions of the future crater. A complete investigation of this motion is com-
plicated and is possible only using high-speed computers. In [3-6], methods are proposed for calculating
the equations of an elastoplastic medium with two spatial variables. Such calculations require a large
amount of machine time; therefore, they are not very suitable in cases where a large number of variants
is needed for the analysis.

To make preliminary calculations aimed at clarifying the effect of the parameters characterizing
the properties of the medium and the conditions of the conduct of the explosion on the ejection crater, it
is expedient to use less complicated methods, requiring a small amount of machine time for each variant.
In the construction of a simple ejection model, in the present work the following assumptions are used:

1) the motion of the medium in the second stage takes place only in a radial direction; 2) the medium is
incompressible. :

The first postulation is based on the fact that the development of the dome starts after the end of
the spherically symmetrical underground-explosion stage, in which the velocity has a radial direction.
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In spite of the fact that, after reflection of the wave from the free surface, the velocity changes di-
rection somewhat, it subsequently again becomes close to radial, since the change in the stresses is mainly
determined by the pressure drop between the cavity and the free surface and takes place (approximately)
in a radial direction. ‘

On the photographs given in [7] it can be seen that, in the stage of the formation of the dome, the
motion of a weakly connected soil is close to radial. In addition to this, experiments with the scattering
of radioactive pickups [8] show that particles of the soil which before the explosion 1ay on exactly the
same radius, drawn from the center of the explosive to the surface, fall at exactly the same place. This
important special characteristic of the motion of a medium with ejection shows that, with calculations in
a radial direction, it is sufficient to use only one calculating cell.

The assumption of incompressibility is based on the fact that, with optimal depths of the charges,
the stresses in the soil at the moment of the arrival of the wave at the surface of the ground are small
and do not bring about any significant compression.

The velocity assumed by the medium under the action of these stresses is taken into consideration
in the present work by the fact that, in calculations of the ejection in the second stage, the medium has an
initial velocity in the radial direction.

A model of an incompressible elastoplastic medium was used in [9] with consideration of the problem
of the spherically symmetrical explosion in the ground.

We take note of [10], which discussed a simple model of an ejection explosion. However, in the model
of the medium considered here there was no friction between adjacent elements, and, in the equation of
motion of the incompressible medium, no account was taken of the force of lateral thrust. Agreement with
the ejection experiment was achieved by selection of the coefficient of the resistance force, introduced in
[10], as proportional to the velocity of an element of the medium.

2, The Equation of Motion

In the spherical system of coordinates r, 6, ¢ (correspondingly, the radius, the polar angle, the lon~
gitude) the equation of motion of a continuous medium for the radial direction has the form

v, _ 1 9(7%) 1 d(t,gsinB) oyt

a9t r2 ar rsin 8 a6 r

— pgcos 0, (2.1)

where p is the density of the medium; t is the time; vy is the velocity in the radial direction; Oy, Og, O
are the normal stresses; Trg is the tangential stress; g is the acceleration due to gravity. In the equation
it is taken into consideration that the motion of the medium has symmetry around the axis 8=0,

We assume that the motion takes place only in the radial direction, and that the medium is incom-~
pressible,

Ug=vg=0, p==const. (2.2)
With conditions (2.2), the equation of the conservation of mass has the form
2 v,y = 0. 2.3)

The problem of the ejection of soil in the presence of axial symmetry contains two independent spatial
variables and the time. A considerable simplification is achieved if, in the calculation of the problem,
there remain only one spatial variable and the time. To this end, in the present work the equation of mo-
tion is integrated over the radius.
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Let us obtain an integral form of Eq. (2.1) for an element of the continuous medium extending along
the radius. We multiply Eq. (2.1) by r’sin 6 and integrate from the radius of the cavity r, to the radius of
the surface of the ground r, (Fig. 1; the values of ry and r, depend on fand t):

S‘ 0 a_al;_f sin 6r2dr = sin 6 ( ?.(_::G_T) dr aie (sm 0 S r,erdr) —sin0 X (0g+ 0,) rdr— gcos S pr?sin 0 dr. (2.4)
v r

T1 Ty T2

Here, on the right-hand part, in the second term the derivative is taken of the integral, and not of
the expression under the integration sign. This result can be obtained by deriving Eg. (2.4) directly for
an element of the medium extended along the radius. The designated integral is proportional to the tan-
gential force acting on each lateral surface of the element, The total force acting on an element is pro-
portional to the derivative of the integral.

The left~hand part of (2.4) is equal {o the mass of medium in unit angle ¢ and angle ¢, multiplied by
the acceleration of the center of mass ry,

Tz

v, 6 T
r 2 . Yo,
Spa—t sin 0 r¥dr = m=i; 2.5)
Tt
2 (& 4
1 . A3 3 ° (rz ’1)
m:Tpsme(lz—ri), Ty = 4(r3—3) (2.6)
2 ™y
From the last relationship we obtain the velocity of the center of mass,
_org o T _on ory
V= T T I 1T gy Ve =g

]2 — 7 1
where vy is the velocity of the boundary of the cavity; v, is the velocity of the surface of the ground,
Integrating the equation of continuity (2.3), we obtain
i, = riv, = riv, = —:13— (P4 ryrs + 73) vg- 2.7
The value of rgvo cannot be substituted into this equality, as was done erroneously in [10], since the

center of mass is shifted over the particles of the medium, and the mass between r, and r, does not re-
main constant,

The stresses enter into Eq. (2.4) in such a manner that it is convenient to introduce the mean values
of these quantities
= S zrdr

T2

S rdr, x={p.0s, O¢ T,5}s To ={PeT80s Oopr Tol-

J J (2.8)
Using (2.5), (2.8), we transform (2.4) to the form
dvg __ 3 2 3 ry+ry N _ 3 (Pz"z pir 1) _ (2.9)
W= (A=) sme @ 5[50 (7~ rt) sin 0] — o5 B0 (050 4 o) — =27 — oo,

where p, is the pressure in the cavity; p, is the pressure at the surface of the ground. The values of r,
and r, are determined from the algebraic relationships (2.6) using the values of ry and m.

The supplementary equations for finding 7, gy, Oy, depend on the model of the medium,

3. An Incompressible Medium with Coulomb Friction

During the process of the formation of the dome, the main mass of the ejected medium is subjected
to considerable shear deformations, considerably exceeding those with which the theory of elasticity is
still applicable. However, at the edges and the center of the dome, the shear deformations are small.
Near the axis of symmetry, the elements are shifted only slightly with respect to one another; therefore,
here the tangential stresses obey Hooke's law, Far from the axis of symmetry, at angles close to the
horizontal, the elements of the medium themselves have small shifts, and the tangential stresses are also
not great.

In the motion under consideration, the areas of slip are the lines @=const, The tangential stresses
in them are calculated in accordance with the relationships of the theory of elasticity, if they do not ex~
ceed the limiting value 74,
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ou
Trg = ’l:'a_e” h:rel LTy 3.1)

where u is the shear modulus. We use relationship (3.1) in a form differentiated with respect to the time,

9T, _n_@”r (3.2)
at r 46"

In such a form, the stresses are calculated from the natural deformations, determined from the
ratio of the shifts to the instantaneous dimensions, and to the original dimensions. In formula (3.2) this
is taken into account by the fact that the quantity r is not differentiated,

We calculate the limiting stress using Coulomb's law,
Te=c — koo(0o << c/k), T,=0(co > ¢/k), (3.3)
where c is the adhesion; k is the friction coefficient.

To calculate the mean values using formulas (2.8) we need to know the dependence of the stresses
on the radius. The exact distribution depends on the radial motion of an element, consideration of which
would greatly complicate the problem, Approximately, the normal stresses will be assumed equal to one
another:

0,=0¢=0p== — D {3.4)

The dependence of the stress on the radius is assumed to be linear

0.—’ o P23 P1Te ) P17 Pa r (3’5)
Ta—Ty re—n
In a homogeneous motionless medium, located in a field of gravity, the stresses depend on the dis-
tances in accordance with a linear law,

In another limiting case, that of a thin shell whose thickness is small in comparison with the radius
of curvature, the stresses are distributed linearly over the thickness also with motion accompanied by
acceleration (with velocities which are small compared with the speed of sound).

It is to be expected that the use of formula (3.5) for the case under consideration will not introduce
any large errors, since it is used only for determining the mean tangential stresses. Using (3.4}, (3.5),
we obtain from (2.8)

P (ridre) + palry -+ 2ry)
Po= 3(rs+ro) ‘

Substituting the value fround for p, into (2.9) and simplifying, we obtain

a—vq=————-—————————3 i 2 __ g2 i Pr—Py 0 (3.6)
ot 2 (3— i) sino 0 [(rz ri) Ty Sin G] +pm(r5—r1) gcos®.

We multiply (3.2) by r, integrate over the radius within the limits from r, to r,, and, using (2.7),
(2.8), we obtain

A LE—
gt Bryre (r1+re)

S+ D) vl (el < ta)- (3.7)

The limiting mean tangential stress 7., is obtained from (3.3},
Tpo=CHipe(pe=> — ¢/k), T,4=0(p, < — c/k). : (3.8)

The values of r; and r, are connected with rj by the algebraic formulas (2.6). The equation of the adiabatic
curve connects the pressure in the cavity with its volume V,. The volume is calculated from the values
of r (6),

d dav av 2 .
f%=-—-771’—, Sk =Frisino. (3.9)
The system of equations in partial derivatives (3.6), (3.7), together with relationships (3.9) and for-
mulas (2.6), (3.8), describes the motion of a medium with explosion ejection, in a radial approximation.

With elastic tangential stresses, the system of equations (3.6), (3.7) is a system of hyperbolic type.
The rate of propagation of perturbations in the plane t, 4, equal to the slope of the characteristic curve,
is expressed in the form
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do —_—
TF=x (3.10)

- rarep’

This rate depends on the distance from the end of the elements of mass to the origin of coordinates. With
r{~T,, from (3.10) we obtain the result that the linear velocity of the perturbations along the dome is equal
to the velocity of shear waves in an unbounded medium, We note that, in the system of equations under
consideration, there is a third family of characteristic curves 6=const.

4. Boundary and Initial Conditions

In seeking the solution of Egs. (3.6)-(3.9), in the region t=0, 0=<0 = 6, (6,< 7/2), the following bound-
ary conditions are taken:

tlo=0 = 0; Tolo=0, = 0.

The first condition is obtained from the symmetry of the problem, and the second reflects the absence of
motion of the medium far from the explosion.

At the initial moment of time, it is necessary to give the velocity and the tangential stress, as well
as the values of the radii of the cavity and the surface, as functions of the angle 6.

These data can be obtained either from calculations of spherically symmetrical explosions [11], or
from experimental data on an underground explosion [2].

With calculations, the initial radius of the cavity is determined from its value at the moment when
the wave reaches the free surface (the end of the spherically symmetrical motion in the medium) or at
the moment when the reflected wave reaches the expanded cavity (the end of the spherical expansion of
the cavity). From the experimental data, the initial radius can be determined from the channeling index
in the given soil (from the ratio of the volume of the underground cavity to the weight of the charge) [2].

The initial velocity of the centers of mass is calculated from the value of the tofal kinetic energy of
the medium Ej, taken on by it at the moment of time at which r; was determined:

v = 3 [r‘r’(r’—"‘) ET’Z 4.1)

rs— r';’ 2mp
where E is the energy of the explosion; « is a dimensionless quantity, equal to the ratio of the total kinetic
energy of the medium at the selected moment of time to the total energy of the explosion.

Formula (4,1) was obtained under the assumption of the uniform distribution of the kinetic energy of
the medium in the underground-explosion stage over all directions, taking account of the dependence of the
velocity on the radius using formula (2.7). With r; ~r,, formula (4.1) is obvious.

The initial values of r, and r, are determined from relationships (2.6) using the values of r; and m,
The latter value, with the explosion, at a depth H below the horizontal surface of the ground, of a charge
of radius R, is found using the formula

my = -—3—)— p sin 6 [(H /cos 0)° — R3],

We note the special character of the solution with the above initial radii. The values of r, do not de-
pend on the angle, while the values of r, rise considerably with an increase in 6. In this case, it follows
from formula (3.10) that the characteristic curves with a plus sign approach each other, although the rate
of approach falls over the course of time, due to the increase in the radii. Near the axis of symmetry, the
points of intersection of the characteristic curves lie very far apart. In the middle part, the intersection
of the characteristic curves can take place after a finite time. This intersection can be interpreted as the
appearance of a discontinuity in the velocities, the displacements, and the tangential stresses along the sur-
face, on one side of which there is an intense motion of the ejected medium, while on the other side there
is practically no motion, It is more probable that the special characteristic under consideration will ap-
pear with a calculation of ejection in a rather strong medium, where condition (3.6), limiting the tangential
stresses, is used in a smaller calculating region.

The initial pressure in the cavity is determined from the equation of state of the explosion products
over a known volume of the cavity

3\?'—1)[31,:

1
4111
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where vy is the adiabatic index of the explosion products; 8 is a dimensionless quantity, egqual to the ratio
.of the internal energy of the gas in the cavity at a selected moment of time to the total energy of the ex-
plosion.

The tangential stresses at the initial moment of time in the calculations were assumed equal to zero
since, with spherically symmetrical motion, they are absent,

5. Ballistic Scattering and Heaping

At the end of the second stage of the development of an ejection explosion the thickness of the dome
becomes so small that the gas breaks through out of the cavity to the atmosphere, and the weakly connected
medium forming the dome decomposes into individual pieces and starts to move along ballistictrajectories.

In the present work, the moment of breakdown is taken as the time of the ascent of the dome to a
height equal to half the depth of the charge. Calculations have shown that the radius of the crater changes
only slightly if the moment of breakdown is taken as a small height (one-third of the depth), or if the cal-
culation is carried further down to atmospheric pressure in the cavity, In all these cases, the volume of
the cavity increased considerably, and the pressure fell sharply and had only a slight effect on the pres-
sure of the medium.

The ballistic scattering, with taking account of the resistance of the air (it is insignificant for large
explosions), was calculated in accordance with a simple scheme. An element of mass will be ejected to
the surface if it has sufficient kinetic energy to rise to the surface, with satisfaction of the condition

(vo cos 0)%/2 = g(H — 7, cos 6). (5.1}

The horizontal flight distance, reckoned from the epicenter, is expressed in the form

L=r, cos 84-v, sin 8(v, cos 0}/ (v, cos B)F — 2g(H — r, cos 6))/s. (5.2)

The dimension of the intermediate crater R, was determined from the maximal angle 6, for which
the condition (5.1) R, =H tan 6, was satisfied.

If the angle 6, is greater than the angle of the internal friction of the medium, then the final dimen~
sion of the crater will be greater than the intermediate, due to slipping of the edges. In this case, a re~
calculation is made, starting from the conservation of the ejected mass. The slope of the sides of the
final crater was taken equal to the angle of internal friction.

In this case, no account was taken of inertial sliding of the sides, which is not great for not too great
depths.

The medium ejected to the surface of the ground forms a heap around the crater. Its height was

determined from the condition of the conservation of mass

8+ L

15 mdd = | phadz (3L /56 <0), (5.3)

L+

where h is the height of the heap; x is the distance from the epicenter; L, is the distance at which falls an
element of mass, lying in the funnel at an angle of 8. If the inequality in (5.3) has the other sign, then the
integration limits in one of the integrals must be exchanged.

Differentiating (5.3), we obtain
h=—m/(p,Ld L/38) (8L/08 < 0), (5.4)

where p, is the density of the soil in the heap, which is generally less than the density of the medium in
the solid ground. If the quantity 3L/986 changes sign, then two layers of soil will fall at exactly the same
distance, and the total height of the heap will be determined by the sum of both layers.

Formulas (5.2), (5.4) define the dependence h(l) in terms of the parameter 8.

6. Results of Calculations

The equations in partial derivatives (3.6), (3.7) were approximated by a two-layer explicit difference
scheme using centered differences with respect to space and time [12, 13].
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Fig. 3 Fig. 4
TABLE 1
R /H
Ps, INM H,cm ir,,cm | P2, - *
Hg Hg | exp. | calen
404 781 3,3 1,4 1,85 | 1,93
230 7,71 3.2 1,7 1,48 | 1,54
135 8 3.4 1,0 1151 1,25
142 11,51 4,3 2,5 0,98 | 1,10

The stability condition was obtained from formula (3.10). Since the radii increased over the course
of time, the permissible spacing with respect to time also increased. This circumstance promoted an ac~
celeration of the calculation, If, in the new time layer, the stress exceeded the limiting value, the stresses
were decreased in accordance with formula (3.9). A similar method was used in [3-6, 11] in the calcula-
tion of elastoplastic motions.

The difference scheme developed was used to calculate model experiments on the ejection of mass in
a vacuum chamber [7]. The initial data were selected in accordance with experiment, The density of the
sand was 1,52 g/cm?, there was no adhesion, and the slope of the internal friction k=0,78, The initial ve~-
locity was equal to zero. The initial pressures in an air bubble p,, its radius ry, the depth H, the pressure
at the free surface, and the dimensions of the calculated and experimental craters are given in Table 1.
The agreement is satisfactory.

Figure 2 shows the development of an ejection dome in a model experiment [7]. The solid line is a
plot of the profile of the dome, obtained by calculation for exactly the same moments of time.

Figure 3 shows the values of the radii of the craters as a function of the friction coefficient (dashed
line) and on the adhesion (solid line), calculated with the other parameters remaining unchanged. An in-
crease in the friction or the adhesion decreases the radius of the craters formed, however,toa varying
degree. The strongest effect is that of a change in the friction coefficient, In a medium which has not
broken down, the region of the calculated changes in the maximal tangential stresses with a change in the
adhesion or the friction coefficient is approximately identical. With ejection, the pressure near the cavity
is considerably higher than the hydrostatic pressure; therefore, here the tangential stresses are consider-

ably greater.

The method expounded can be used for the calculation of large ejection explosions. The solid line in
Fig. 4 shows the rate of rise of the epicentric part of the dome as a function of the time, obtained in the
Schooner experiment [14] (an underground nuclear experiment in the United States Trotyl equivalent 31
kilotons, depth 108 m), and calculated by the method proposed in the present article (dashed line). The

agreement is satisfactory.
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QUESTIONS OF SIMILARITY AND THE SCATTERING
OF WAVES IN VISCOPLASTIC MEDIA

G. M. Lyakhov and K. S, Sultanov UDC 624,131.43 +539.21.084

A study of plane waves in viscous media was made in [1~7], A solution of the problem of the propaga~
tion of a wave set up by unsteady-state shock loading in a viscoelastic medium was obtained using an elec~
. tronic computer in [6], and a solution in a viscoplastic medium in [1, 7]. In the latter case, different equa~
tions are introduced describing the behavior of the medium with loading and unloading, which leads to the
formation of residual deformations. On the basis of the solutions of [1, 7], a finite-difference representa-
tion was constructed for the equations of motion in Lagrange variables, and for the sequence of differential
equations determining the behavior of the medium. The method of "straight-through" calculation with
pseudoviscosity was used. The introduction of the pseudoviscosity brings about the replacement of the
shock fronts by regions of a continuous change in the parameters, which leads to additional difficulties in
determination of the laws governing the washing-out of a shock wave and the scattering of waves, Below,
the method of characteristic curves is used to obtain a solution to the problem of the propagation of a
plane wave, set up by an unsteady-state shock load in a linear viscoplastic medium, corresponding to the
model of [1]. It follows from the calculations that volumetric viscosity leads to scattering of the waves
and to nonebservance of the condition of similarity. An increase by an order of magnitude in duration of
a wave changes the rate of propagation of the maximum of the stresses, and the stresses themselves, by
only a few percent. The values of the deformation and the velocity of the particles vary to a greater de~
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